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The Knowledge Representation Project at ISI

Robert Mac Gregor
John Yen

USC/Information Sciences Institute
4676 Admiralty Way
Marina del Rey, CA 90292

1. Introduction

IST's knowledge representation research can be divided into two phases. The
initial phase produced the NIKL classifier, which was the first system anywhere to
provide a competent and efficient capability for inference applied to terminological
knowledge. The second phase began with a study of how NIKL could be improved, and
is now in the process of producing LOOM, a new knowledge representation system with
significantly broader inference capabilities. This paper addresses these two efforts,
beginning with a discussion of the need for adequate knowledge representation.

We begin by describing the features we require in a competent knowledge
representation system. We argue that systems such as relational DBMSs or theorem
provers do not meet these criteria, in-as-much as they provide only a part of the
inferential capabilities needed by some of today’s Artificial Intelligence (AI)
applications. We then describe the architecture which has evolved in the family of
knowledge representation systems which trace their ancestry back to the KL-ONE
system, and introduce the notion of a classifier. Next, we will present more detail on
the kind of technology that has grown up around classification-based knowledge
representation systems. We explain what ISI's earlier contribution has been to this
technology, and list some of the applications which use this technology. Finally, we
describe the current research being carried out by ISI's knowledge representation
project, and we describe some future plans for ISI's research in knowledge
representation.

2. Competent Knowledge Representation Systems

The field of knowledge representation concerns itself with (1) providing a means
for representing knowledge within a computer, and (2) providing mechanisms that can
produce useful inferences based on the resulting knowledge structures.

The first examples of knowledge representation in Al were ad hoc systems
constructed to meet the requirements of particular applications. In a typical system
there were no well-defined semantics (Woods 75], and the knowledge was not re-usable,
so that there was little that might be called a knowledge representation technology---
knowledge representation consisted mainly in defining and manipulating data
structures.




A principal argument found in the literature that has evolved since the advent of
the KL-ONE knowledge representation language {Brachman and Schmolze 85] is that a
language should be designed specifically for the purpose of representing knowledge. KI.-
ONE was designed to represent the kinds of knowledge constructs encountered by
developers of natural language processing syvstems.  The avallability of a knowledge
representation language allows its users the freedom to manipulate and question a
knowledge base without having to be familiar with either the data structures used to
represent the knowledge, or with the inference mechanisms that interpret requests
from the user. An analogy can be drawn with the field of database management
svsterms (DNIBSY - There, the advent of the relational model and relational query
languages was heralded as a major improvement over the nctwork models used in
carlier database systems.

The advent of KL-ONE spawned a lot of concentrated activity in knowledge
representation. Several high-level principles :merged, which strengthen our notiow of
the important components that constitute a competent knowledge representation
system:

1

1. An expressive’ and high-level language should exist for representing both

terminological and :ssertional knowledge.?

o

. The language should be accompanied by a rigorous semuautic definition.

3. The system should provide competent inference mechanisms which respond
to user requests about any knowledge entered into the system’s knowledge
base.

We will examine each of these criteria in turn as they apply to (1) a relational
DBMS; (2) a logic-based system (e.g., Prolog or a generic theorem prover); and (3) one
of the more robust descendants of KL-ONE.

A highly expressive language places few restrictions on what kinds of knowledge can be represented,
while a language with low expressivity allows only a few simple kinds of knowledge to be represented.

St rminological knowledge consists of the definitions of the terms in some domain. ¢.g.. the term girl
might be deflined as the conjunction of the terms child and female; assertional knowledge consists of
statements about the way things are in the world, e.g., the statement (girl Nancy) asserts that the
ohject denoted by the symbol Naney satisfies the predicate girl. In a relational DBMS. the schema
definitions represent terminological knowledge, while the tuples in the database represent assertional
knowledge.




An Fxpressive High-Level Language

The degree of expressiveness provided by a relational DBMS is relatively low, and
therefore such systems do not meet our first criterion. By contrast, a logic-based system
using some variant of first-order logic (FOL) as its knowledge representation language
does exhibit a high-degree of expressive power. Yet, [Brachman 82] and [Brachman,
Fikes, and Levesque 83] argue that one can design languages that are more suitable than
FOL for representing terminological knowledge. Languages such as KL-ONE, NIKL,
and LOOM! provide a rich syntax for defining terms. In each case, however, this syntax
is not particularly appropriate for expressing assertional knowledge. Thws, the type of
knowledge representation system that we advocate contains two sublanguages: a
terminological language such as one of the languages just mentioned, and a separate
assertional language assumed to be some subset of FOL.

A Rigorous Semantic Definition

The semantics of the terminological (schema) portion of a relational DBMS is
almost non-existent, so it is rigorous by a vacuous argument. OGn the other hand, a
great body of theoretical literature has discussed the semantics of the assertional
component of a relational DBMS. Logic-based systems, of course, have an impeccably
rigorous semantics for both the terminological and assertional components, up to the
point where they introduce extra-logical operators (e.g., Prolog’s "cut" operator), at
which point they abandon their claim to rigor.

Several rigorous semantic definitions have been worked out for KL-ONE-like
languages. [Schmolze 85] describes a set-theoretic semantics for NIKL; [Brachman,
Fikes, and Levesque 83] describes a semantics for KRYPTON based on logical
entailment. Appendix A illustrates the semantics for the terminological component of
LOOM.

Competent Inference Mechanisms

A relational DBMS possesses a query facility that is able to answer queries about
its assertional knowledge. However, it has no capabilities whatsoever for reasoning with
terminological knowledge. A logic-based system’s ability to reason with assertional
knowledge is in general very good (ignoring possible questions of efficiency). However,
they both have trouble reasoning with terminological knowledge. There are two sources
of difficulty. First, a terminological definition is equivalent (from a reasoning
standpoint) to a universally-quantified bi-conditional proposition. Logic systems
traditionally have difficulties in dealing with bi-conditionals (e.g., they cannot even be
expressed in Prolog).® Second, some of the questions we would like to have answers to
(e.g.. what other terms are implied by the term "battle-situation") are second-order

3From a formal standpoint, the Prolog language does not possess a capability for defining terms.




questions that are generally beyond the scope of today’s theorem provers.

The classifier is an inference mechanism developed specifically for answering
guestions about analytic relationships between terms.  Its principal funetion is to
compute subsumption relationships between terms.t In addition to providing question-
answering capability, a classifier is typically used to organize all of the terms defined for
a knowledge base into a taxonomy in which more general terms are placed above more
specific ones. This capability for self-organization is one of the most striking features of
this type of system. Section 6 lists a number of applications where the inferential
capabilities of a classifier have proven to be useful.

Hybrid systems, which utilize a classifier to reason with terminological knowledge,
and which possess a separate (more traditional) inference mechanism for reasoning with
assertional knowledge. are the only systems in use today that demonstrate inferential
competence for both terminological and assertional knowledge. We expect that as the
abliity to reason with "meta-level" (terminological) knowledge becomes less of a dream
and more of a reality in Al systems, the demand will increase significantly for
knowledge representation systems that display inferential competence at the
terminological [evel. Appendix B is a matrix containing a feature analysis that

summarizes our evaluation of four classes of knowledge representation systems.

3. Classification-based Technology

This section describes more of the technology now associated with those
knowledge representation systems that center their inference capabilities around a
classifier. We review some of the theoretical results derived during the evolution of this
technology, and describe the impact that these results have had on the design of
practical systems. This section concludes with an examination of the criteria used to
determine where the line that divides the TBox and ABox knowledge spaces should be
drawn.

The component of a system that deals with terminological knowledge is commonly
called a "TBox," while the component that manages assertional knowledge is called an
"ABox." Clearly, it is necessary that some facility be provided which "bridges the gap"
between the TBox and the ABox. Classification-based hybrids incorporate a component
called a recognizer (also called a "realizer"), which serves to relate ABox knowledge to
TBox knowledge (see [Vilain 85]). A recognizer is the dual of a retrieval mechanism:
Given a (TBox) concept, a retrieval mechanism is able to find all (ABox) instances
belonging to the extension of that concept; given an ABox instance, a recognizer is able
to produce all TBox concepts that include that instance in their extensions (i.e., all

A term A subsumes another term B if instances (members of the extension) of B must also be
instances of A.




concepts that describe that instance).5 More prosaically, a recognizer can answer

questions such as "Tell me everything you (the system) know about John Q. Public," or
"Tefl me what vou know about the current status of this steam turbine.”

Two distinet reasoning components, a classt fier and a recognizer, form the basis
of the architecture of our hybrid systems. Typically, the recognizer utilizes the classifier
to perform the most difficult (from an engineering standpoint) of its inferences, so the
scope and power of the over all system depends most heavily upon the abilities of its
classifier.  Originally, designers of classifiers intended that the mechanism for testing
subsumption relationships between TBox concepts should be sound, complete, and
should run in polynomial time, i.e., it should be tractable. Unfortunately, theoretical
analyses of varions candidate TBox languages [Brachman and Levesque 8],
[Patel-Schneider 87] has revealed that tractability can only be achicved for very
restricted ("impoverished") TBox languages. These theoretic results guarantee (unless
P=XP) that the desirable goals of soundness, completeness, tractability, and a
reasonably high degree of expressivity (in the TBox) cannot be simultaneously achieved.

Systems that are both principled and reasonably efficient require soundness and
tractability to be retained, and thus the design choice to be made is a trade-off between
completeness and expressivity. Most of today’s classifiers have opted to sacrifice
completeness in favor of expressivity because of the real demands placed on knowledge
representation by today’s intelligent systems. It is generally more usefui to have a
system capable of providing some information in a timely manner than to have a
guarantee that you will get a complete answer eventually.

With this brief background, we can now address the question "How do we decide
what knowledge goes in the TBox, and what goes in the ABox, i.e., where should we
draw the line?" The answer has an empirical basis, rather than a theoretical or
philosphical one: We desire a fairly expressive TBox language. On the other hand, we
desire that ucciz Jf o classification system can "trnst" it to find what they regard as all
"reasonable" inferences (while realizing that onr TBox classifier will miss some
inferences (classifications) due to the fact that it is necessarily incomplete). Put another
way. within the limits established by the degree of expressiveness of the TBox language,
thie classifier should be "as smart as its users."

There has been a good deal of experimentation to find a satisfactory set of
primitives (together with a set of algorithms for reasoning with those primitives).
Within the community, a consensus has been reached on the choice of the more basic
operators. However, these experiments have tended to stay within the bounds of
expressivity first established by KL-ONE. One of LOOM’s major contributions is to
demonstrate the successful incorporation of several new primitives which significantly

>This statement is not quite accurate---if the classifier is not complete, then some inferences may be
missed, I.e., some, but not all, concepts will be found.




extend the language’s expressivity while maintaining overall inferential competence and
uniformity,

4. An Example

To make this discussion clearer, we present an example that illustrates one
possible application of a classifier. We f{irst sketeh out the problem. whieh is to
construet a model of a nuelear reactor, and invent a partial methodology for how the
model is to be constructed. Next, we run through a scenario containing a few fragments
of such a model.  Finally, we discuss the brouder implications of ihis approach to
model-building. and provide some commentary on the tyvpe of fulerences exhibited by
the rlassifier.

Our model of a reactor has been constructed by f{irst building a reactor model
consisting of abstract descriptions of its various components, and then refining or
instantiating the components. In our scenario, one or a team of more experienced
designers have initially created a knowledge base containing (1) fully-abstract concepts
such as "reactor part" and "pressurized fluid"; (2) "guidance rules," which help to
guide partially defined concepts into their proper place in the model: and (3) "safety
rules.” which can be invoked to verify that newly defined components obey specific
safety criteria. We imagine that the initial model is turned over to a team of (possibly
less-experienced) modellers who will develop an increasingly accurate design of an actual
reactor. The rules defined up-front help to insure the consistency and correctness of the
system built during this second phase.

Below is a fragment of a model, expressed in the LOOM language.6 Below that is
an English explanation of each of the LOOM constructs.

;, Model of Reactor:
[1] (defconcept Reactor-Part)
[2] (defconcept Pressurized-Part
:1s (:and Reactor-Part (:exactly 1 psi))
:constraints (:exactly 1 max-Tated-psi))
(3] (defconcept Pressurized-Fluid)
{4] (defconcept Reactor-Coolant :is (:and Pressurized-Fluid :primitive))

;, Guidance Rules:

[5] (implies
(.and Reactor-Part (:the type of-finid Pressurized-Fluid))
Pressurized-Part)

;.Safety Rules:
[6] (defconcept :is Reactor-Part
:disjoint-covering (Safe-Part Unsafe-Part))
[7] (implies
(:and Pressurized-Part Safe-Part)

ENote: Appendix A summarizes the LOOM constructs used to synthesize concept definitions.

—-—-——_




(<= psi max-Tated-psi))
(8] (:implies (:and Safe-~Part
(:the type-of-fluid Reactor-Coolant))
(>= psi 1O

, Descriptica or Specific Part:
[9] (defcor.c.pt Reactor-Outlet-Piping :1s (:and Reactor-Part :primitive)
cconstraints ((= max-rated-psi 5)
(.the type-of-fluid Reactor-Coolant)))

ronglish explanation of this model:
(1] There is a concept called a "reactor part;
12} X is a "pressurized part” - A D-ONLY-IF X is a reactor part and X has the
Cattribate sty
IF Xis a pressurized part THEN X has an attribute "max-rated-psi™:
3] There ix a coneept ealled o "pressurized fluid™;

f

L A "reactor coolunt™ is a particular kind of pressurized fluid:

B I X is a renctor part and the value of "type-of-fluid" for X is
"pressurized fluid™ THIEN Xis a pressurized part;
[6; A reactor part is either a safe part or an unsafe part, but not both;
[7] I X is both a reactor part and a safe part THEN
the value of X for "psi" is not greater than its value for "max-rated-psi";
[8] IF the value of "type-of-fluid" for X is "reactor coolant" and X is a
safe part THEN the value of "psi® for X is at least 10;

[9] A "reactor-outlet-piping" is a particular kind of reactor part;
IF X is a reactor-outlet-piping THEN the value of "max-rated-psi"
for X equals 5, and the value of "type-of-fluid" for X is "reactor coolant";

4.1. Defining the Concept "Reactor-Outlet-Piping"

Suppose we are in a state where concepts [1]-[8] are in place, and our job is to
define a concept representing a piece of piping that will carry reactor coolant away from
the reactor. The final deseription will have a large number of attributes describing its
size, where 1t gets attached, ete., but initially we just wish to sketch in a few features.
So. we define the concept [9] above, naming it "Reactor-Outlet-Piping”. Now the
classifier goes to work:

Because Reactor-Outlet-Piping has "type-of-fluid" set to Reactor-Coolant, which
is a type of Pressurized-Fluid, it gets classified below the (unnared) concept which is
the first argument of the implication [5]. Applying the implication in [5] to Reactor-
Outlet-Piping reveals that instances of Reactor-Outlet-Piping are necessarily instances
of Pressurized-Part. At this point, we may or may not elect to redefine Reactor-OQutlet-
Pipiug to specialize Pressurized-Part explicitly.




The model builder’s manual indicates that we should periodically cheek the safety
of our desiens. We do this for our concept Reactor-Outlet-Piping by determining
whether or not an instance of Reactor-Outlet-Piping ean also be an instance of Safe-
Part, d.en we construet and elassify the tollowing definition, and then test to see it it has

a4 non-null extensior.

“16; {( and Reactor-Outlet-Piping Safe-Part)

Coneept [10] will classify the concepts [7] and 8], and henee will inherit both of
the constraints contained in those concepts,  Combining those constraints with the
originally defined restriction on the attribute "max-rated-psi” yvields o contradietion.
The classifier therefore marks the resulting coneept as "ineoherent.”  The result after
classitieation is the concept:
_11; (defconcept
'is (:and Reactor-Outlet-Piping Pressurized-Part Safe-Part)
cconstraints ((>= psi 10)
= max-rated-psl 5) (<= psi max-rated-psi)
(:rexactly 1 psi) (:exactly 1 max-rated-psi)
(:the type-of-fluid Reactor-Cooclant)
“is-incoherent))

Based on the constraints implied by this concept, the classifier will have calculated
that "psi" is both greater than 10 and less than 5, which is impossible.  We have
therefore determined that our deseription of Reactor-Piping-Outlet is incompatible with
Safe-Part.,

4.2, Discussion of the Example
Several points are note-worthy:

e A striking feature of this example is that all of the inferences performed by
the classifier were applied to descriptions, i.e., all reasoning took place at
the "meta-level™.  As far as we know, all of the tools available today that
might be applied to such a problem (e.g., production systems, frame-based-
systems, relational-dbms-based systems, Prolog) are capable of reasoning
only with instantiated (ground-level) data.

e The knowledge base used in this example is fully-declarative. Iissentially, it
just represents an encoded form of a collection of axioms in the predicate
ealeulus,  The ability of the system to perform analvsis at the meta-level
depends on the fact that all of the knowledge is represented explicitly.

o The example illustrates a classifier operating by embedding new coneepts
into an  existing  taxonomy. This  exemplifies  its  capability  for

sel forganization of knowledge,

o The reasoning deseribed  llustrates synthetie, as opposed to analyt'e

4'-"'-----IllIllllIlIllIIIlIIlIIIIIIIIlIIIIIIIlIlIIIIIIIIIIIIIIIIIIIIIIIIJ



reasoning. During our classifications. additional information about Reactor-
Outlet-Piping was acquired from the rules [5], [7], and (8], whereas purely
analytic reasoning, by definition yields no new information about a concept.
The LOONM classifier. when completed, will be the fiist classifier capable of
svnthetic reasoning.

e Finally. our example nicely illustrates how statically defined constraints can
be used to guide the model-building process.

5. The NIKL System

The original KL-ONE system successfully demonstrated "proof of concept," but it
ran much too slowly to be used in applications. A joint effort by researchers from ISI]
and BBN produced a design for a new terminological language called NIKL. IS then
produced a classifier for the NIKL language that was very much faster than the KL-
ONE classifier -- fast enough to be a valuable research tool. The benefits were
immediately realized as KL-ONE-based applications at ISI and BBN were converted to
use NIKL.

Subsequently. IS made few modifications to the NIKL system until DARPA
funded an new [SI project called Empirically Valid Knowledge Representation in 1986.
One of the first tasks of the new project was to translate NIKL into Common LISP -- a
move that significantly increased its accessibility to the research community.
Accordingly, an increasing volume of requests for NIKL have come from around the
world.  Appendix C lists 17 institutions that have solicited and received a copy of
NIKL.

Another task of the new project produced a graphic display capability for viewing
the concept networks produced by the NIKL classifier. The "ISI Grapher," which was
designed as a general-purpose tool, has had a fairly spectacular reception outside of ISI.
A paper on the Grapher [Robins 87| has appeared as an invited talk in Symboliikka '87,
a Finnish ~onference on user-interfaces and graphics, while 178 sites have expressed
interest in obtaining the ISI Grapher. The Grapher has been shipped to 50 of these

sites. This wer” !hes not represent deep research, but it does represent work that has
practieally re " o1 research ideas. Furthermore, the results arc of direct benefit to the
research couw: . ty, and have been applied in practical, technological implementatione,

6. Examplcs of the Use and Influence of NIKL

The development of NIKL led to a rapid increase in the number of research efforts
using KL-ONE-like knowledge representation languages. The Consul user interface
management effort was the first to employ the language. The basic user interface used
the models to structure displays [Mark 81], and to supply semantics to terms used in a
forward chaining inference system. Consul also used NIKL in a natural language case
frame parser where the model represented some of the lexical semantics, as well as the
case frames [Sondheimer 84]. User interface research has continued with the use of
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NIKL in a multi-modal user interface system, I [Arens 87]. Natural language research
has seen NIKL applied in a text generation system [Sondheimer 86] and another natural
language understanding system [Weischedel 87]. In the two natural language efforts,
the systems were able to share a common world model through a NIKL knowledge base.

Parallel applications have occurred in the area of expert systems. The Explainable
Expert System effort used NIKL, to describe the problem domain in an effort that
produced a expert system creation system. [Neches 85] Another effort, BACKBORD. is
producing a browsing interface for databases or knowledge bases, which utilizes NIKL
knowledge buses to help users who are searching for information but need assistance in
formulating a request that will retrieve exactly what they are looking for. [Yen 87] A
related effort. TINT, adds a notecard facility to NINL models as a mechanism for
reducing the "brittleness" of expert systems when approaching the boundaries of their
knowledge. [Harp 87]

All these applications have occurred at ISI and BBN. ISI has also interacted with
graduate students and professors who are using NIKL in their research at institutions
such as Massachusetts Institute of Technology, Carnegie Mellon University and the
University of Pennsylvania. '

One of the healthiest signs of NIKL's success is the number of researchers who
have used NIKL as a starting point for their work. KL-TWO uses NIKI, as a T-Box to
which it added an A-Box [Vilain 85]. Brachman has related that NIKL is the standard
by which he has measured the Krypton T-Box [Brachman 85]. In part because it was
impossible to send NIKL outside the Uniwed States for many years, there have been
many [uropean imitators. Most notable are the BACK system, which shows a well-
matched T-Box and A-Box [von Luck 87] and SB-ONE, which has benefited from
extensive development. [Xtra 87].

7. The LOOM System

The Empirically Valid Knowledge Representation project (introduced in Section 5)
came into existence because users of NIKL had generated a substantial list of requests
for fundamental improvements and extensions to NIKL (see [Kaczmarek 86]). The
requests were for:

e an [ncremental Classifier -- users wanted to be able to modify the definitions
of already-classified concepts, and wanted the classifier to reclassify all
concepts impacted by each modification.

e an ABox and Recognizer -- while NIKL provides a competent and efficient
TBox component, theie was no ABox or recognizer available with

comparable capabilities.

e major Extensions to the Terminological Language:
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o a richer vocabulary for defining binary relations, e.g., users wanted to
be able to define iuverse, transitive-closure, and composed relations;

o specinlized representations for Sets, Intervals, and Sequences;

oa capahility for representing necessary conditions and sufficient
conditions (constraints).

Counsi lerable research went into the problem of introducing constraint knowledge
into the classifieation paradigm. The solution required that the semantic basis of NIKL
Le rovised in ecrtain places. To indicate that significant changes were made, the new
svstein was given @ new name -- LOOM,

In section 7.1, we give an account of the inference mechanism developed to reason
aboat constraints in LOOM. This illustrates some of the research that has gone into
the design of the LOOM system.

7.1. The CBox

As already mentioned, KL-ONE-bascd systems have an established tradition of
making a strong distinction between terminological (TBox) knowledge and assertional
{ABox) knowledge. In order for the classifier to reason with constraints, we found it
necessary to further partition the knowledge in the ABox. Assertions about classes of
individuals will be labelled constraint knowledge and placed in a CBox, while assertions
about single individuals will remain in the ABox.

The most useful type of constraint takes the form of an implicaticn, i.e., it has
the form "IF X is an instance of the class P THEN X is also an instance of the class
Q". In our previous examples, all uses of the implies operator or the :constraints
keyword represented specifications of implication relationships, e.g. "IF X is a
pressurized part THEN X has an attribute 'max-rated-psi’".” We have developed a new
type of classifier, called a CBox classifier, which is able to compute implication
relationships between concepts based on both definitional and constraint knowledge.
(The inferences illustrated in the Reactor Part example were mostly the result of CBox
classifications, rather thau TBox classifications). Basic to a traditional classifier’s
operation is that it computes the subsumption relationships between all pairs of
concepts in a network. The CBox classifier expands this paradigm by computing
implication relationships between all pairs of concepts in a network. Thus, for
example, it is easy for it to answer the "second-order" question "What terms are
implied by the term ‘battle-situation’"

The language used to express TBox knowledge is deliberately restricted so as to

"The CBox contains other knowledge besides implications (e.g., assertions of disjointness). This falls
outside of the scope of our present discussion.
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exclude certain constructs (e.g., recursive definitions) that are not amenable to
classification. We repeat this technique for constraints -- the syntactic structures that
appear in LOOM :constraints or implies clauses translate into knowledge structures
for which we have developed competent classification algerithms. As we will illustrate
below, the CBox classifier utilizes the TBox classifier to perform most of its inferences.
Thus, not only is the syntax for implications similar to that for TBox knowledge (as
illustrated in the previous section), but the same data structures can be used to
represent both types of knowledge. This has the practical benefit that each new
inference capability added to the TBox classifier automatically extends to the CBox
classifier as well.

Here, we sketch the algorithm for CBox classification:® the computation of each
implication relationship is represented internally by an "implies" link that links a
concept C to a concept CI which represents the conjunction of all concepts implied by

C. (Before C is classified. C’s definition may indicate a set of concepts that are implied
by C).

CBox Classification Algorithm:

First, tbox-classify C. Define C1 to be the conjunction of all concepts
reachable from C by following implies links (i.e., compute a transitive closure
over the implies links). Tbox-classify C1. Define C2 to be the conjunction of
all concepts implied by C1 and then tbox-classify C2. Repeat until C(k) =
C(k+1). Set CI = C{k).

A key element in the efficiency of this algorithm is that deductions made during
previous cbox-classifications are completely characterized by the "implies” links placed
in the network, with the result that no time is wasted recomputing results which were
deduced previously. Because the implies relation is reflexive, it is necessarily the case
the C(i) subsumes C(i+1) for all i’'s. Hence, termination of the algorithm is guaranteed.

It may not be obvious that the classification cycle needs to be repeated, i.e., that k
> 1. However, a trace of the algorithm applied to our Reactor-Part example reveals
that (depending on the order in which the network is traversed) two complete
classifications may be necessary to determine that the concept [10] implies the concept
[7). We have produced artificial examples that show that k can be arbitrarily large;
nowever, we expect that, for real applications, it will usually turn out that the second
classification will vield no new information. Hence, we will be looking for heuristics
that recognize situations for which a single classification suffices.

BThe CBox classification algorithm implemented in LOOM is more efficient (and more complex) than
the one sketched here, but the overall inference strategy is the same.
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8. Future Plans for Knowledge Representation Research

We deseribe two different researel directions that are planned by ISI's Knowledge
Representation Projecet. First, we deseribe plans for future extensions to LOOM itseif.
Second, we deseribe work on a new styvle of programming that uses a classifier as its
basic controd mechanisin.  This effort is a part of the Shared Knowledge Representation
project. which is a follow-on to the Empirically-Valid Knowledge Representation
project.

8.1. Future Work on LOOM

We envision a <hift in the character of future extensions to LOOMN. away {from the
present  emphasis on o abstract, mathematical knowledge structures. and towards
modelling and reasoning about physical-world knowledge. Some immediate caiididates
for modelling include Time. Location, Events, Actions, Change of State, and Collectives.
The starting point for some of these will be models already developed by other projects
within [SI.

There are two major guidelines that will constrain our modelling efforts. The first
is that whatever we prodiice must be, to the greatest practical extent, application-
independent. For example, we would expect that each of the other projects will have its
own notion on the best way to model Time. We will have to create a model that is
simultaneously acceptable to all of the different internal projects. The fact that at least
six other projects internal to ISI will be using LOOM in the near future offers a unusual
opportunity: a consensus among these projects relative to some construct should stand
a reasonable chance of carrying over to applications outside of ISI. The payoff, of
course, is that as these projects increase their use of commonly developed knowledge
structures, the possibilities increase for inter-communication and sharing of knowledge
across applications.

The second major modelling challenge is that each new modelling construct must
be made to fit into the classification paradigm. For example, here is how we have
already chosen to handle numeric comparisons:

Suppose we introduce two new concepts: "P50" is the set of Persons of age
at least 50, and "PP60" is the set of Persons of age at least 60. LOOM will
create two "intervals" [50..Infinity) and {60..Infinity), classify the intervals,
discover that [50.Infiuity) subsumes [60..Infinity), and then conclude that P50
subsumes 60.

In the above example, LOOM handled numeric comparisons by converting them to
numerie intervals, and then handing the problent over to w reasoner that understands
intervals. The point here is that adding a new capuability to LOON involves more than
just agreeing on a few data structures. A precise semanties must be formulated,
usually, some speeial-purpose algorithms must be developed: and eare must be taken

that new primitives ure orthogonal to the existing ones.  (internally, the elassifier relies
on achieving a canonical representation for its knowledge <tructures -- this requirement
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is defeated if redundancy or overlap creeps into its set of primitive constructs.)

The resulting payoff is that a careful implementation of a knowledge structure
will allow LOOM to reason competently and efficiently in that new domain, and it will
allow that new reasoning capability to blend-in smoothly with other specialized
reasoners. The classification paradigm appears to provide a very good medium for
installing and integrating multiple domain-specific reasoners.

8.2. Classification-based Programming

There have already been systems written (within the CONSUL [Mark 81] and EES
[Swartout and Neches 806] projects) that demonstrate how the control portion of a
program can be implemented with a classifier.? Such programs are "classification-
based." The increased expressive power of LOOM allows us to encode a greater
percentage of our program in terms of LOOM constructs -- the goal is that the "core"
of an application program can be coded entirely within a LOOM-like language. The
long-range goal of this research is to produce a new programming technology superior to
the rule-based technology in use today.

In this section, we briefly characterize the kinds of inferences made by the LOOM
classifier, and then discuss how we are planning to employ this reasoning capability
within the context of a general programming environment.

Cast into a logic framework, the definitions found in a TBox map into bi-
conditional propositions. Thus, a classifier’'s forte is reasoning with bi-conditionals --
something that many logic-based systems (e.g., Prolog) find difficult or impossible. A
major achievement of the LOOM system is that it incorporates ordinary conditionals
into the classification framework (where they are referred to as "implications"). The
inferences drawn by the LOOM classifier are all "forward" inferences -- whenever new
knowledge is introduced into the system, LOOM'’s response is to immediately compute
all other new propositions implied by that new bit of knowledge. The results of these
computations are most often preserved as semantic links placed between nodes in the
network, where each link represents an instance of a deduced relationship. (LOOM’s

repertoire currently includes subsumption, implication, inverse, and transitive-closure
links).

We expect that this characterization of LOOM'’s reasoning capabilities will remain
invariant as LOOM evolves to incorporate additional modes of special-purpose
reasoning. In particular, while the reasoning power of LOOM will continue to increase,
the system will never on its own achieve Turing-completeness. Therefore, to program
with LOOM, it is necessary that a Turing-complete language (e.g., LISP) be interfaced
with LOOM, resulting in a hybrid programming language.

9The NIKL classifier was used in both of these projects.
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Conceptually, the LOOM recognizer is designed to react immediately to each
change in its knowledge base, and it is able to determine (modulo incompleteness) all
consciueneces of each chiange, We expect to find this behavior valuable for such
applications s diserere simulation and process control. Thus, while current applications
f elassifiention technology all lie within the domain of Al we expect other non-Al
apohications will benefit as well once the technology has reached a sufficent state of
maturity,

The LLOOM recognizer can be viewed as a powerful and efficient pattern matcher
that nintehes 2 new instanee {datum) with all concepts {patterns) in T-box. It is
powerful because the matching process is based on the semantics, rather than the
svitax, of the data aud the patterns. The recognizer is efficient because (1) the
paiterns are organized into a taxonomy (analogous to the RETE pattern nets existing
production systems), and (2} the recognizer only needs to consider those patterns that
are semantivally relevant to the datum. Recently, we have produced (in conjunction
with the 1SI's FAST aud EASES projects) a preliminary design for a classification-
driven produetion system that uses the LOOM recognizer as its pattern matcher.

['he architecture of a classification-triggered production sy~tem differs from
conventional one in that the system is triggered by new classifications rather than by
the recognize-select-execute cycles. The condition of each production is represented as a
class. Thus, when an instance gets classified under a class, all productions whose
conditions are the class get instantiated and passed to an external production manager
that selects and executes the instantiated productions.

The future work of this research includes (1) defining a language to express
production rules, (2) specifying the interface between LOOM and the production
manager (which will be designed and implemented under the FAST and EASES
projects), and (3) implementing the productions in LOOM. As a test bed, the FAST
project will apply the production system to building an expert system for recognizing
bad part numbers. Eventually, integrating the reasoning capabilities of LOOM into the
production system architecture will generate a new programing environment that
facilitates representation, reasoning, and acting on various kinds of knowledge in Al
systems.

9. Summary

We have presented an informal standard for evaluating the competence of a
knowledge representation system. Our most stringent criterion is that a knowledge
representation system should demonstrate inferential competence for both
terminological and assertional knowledge.

The classification-based knowledge representation svstems that trace their
ancestry back to KL-ONE are developing a promising technology to yield systems that
exhibit inferential competance and are efficient enough to be used in practical
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applications.  The classification paradigm is proving to be a good medium for
embedding multiple efficient, domain-specific reasoners.

[SI is playing a major role in advancing the state of the art in classification-based
systems, and in delivering practical implementations of this technology. The NIKL
classifier provided the first example of a practical termiuological reasoner. Research
that has gone into LOOM, the successor to NIKL, has considerably widened the scope of
inferences that can be captured within the classification paradigm. Among LOOM’s
innovations will be the ability to compute all implication relationships between terms in
a taxonomic r~twerk, LOONM will exhibit significantly more comprehensive inferential
capabilities than its predecessor, while retaining the efficient classification algorithms
that went into the NIKIL system. LOOM will find immediate application in a number
of on-going research projects at ISI, and has sparked the interest of a number of Al
research sites outside of [SI.
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A. LOOM Semantics

Summary of LOOM Expression Operators

Connectives

(rand Cy ... Cy) the conjunction of concepts/relations C, ... C;
(ror Cy ... C)) the union of concepts/relations C, ... C;
{:not () the complement of the concept/relation C

Concept Expressions

cpramitive a unique primitive concept

(rat~least k R) the role R has at least k values

(rat-most k R) the role R has at most k values

(:exactly k R) the role R has exactly k values

(:all R C) all values of the role R have type C

(:some R C) at least one value of the role R has type C
(:the R C) " role R has exactly 1 value, and it has type C
(:same-as Ry ... R;) roles Ry ... R; have identical values

(REL R, ... R;) the relation/operator REL is satisfied by the

values of the roles Ry ... R,

Relation Expressions

:primitive a unique primitive relation
(:domain C) the domain fillers have type C
(:range C) the range fillers have type C
(:inverse R) the inverse of the relation R
(:lambda (args) . body) a (primitive) operator relation

Relation Attributes (for a relation R)

:single-valued (R(x,y) A R(z,2)) implies y = =
:closed-world closed-world semantics apply to f2’s role fillers
:symmetric R(z,y) = Ry, z)

:sequence s role fillers form a sequence

Set Expressions
(:symbols S ... S;) the set of symbolic literals {5 ... §,}
(:instances [, ... [;) the set of databasc instances {/; ... [;}

Interval Ioxpressions
(:through Sy ... §;)  the set of scalars between S) and 5, inclusive
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TERMINOLOGICAL
COMPONENT

B. Feature Analysis

FEATURE ANALYSIS OF CANDIDATE KNOWLEDGE REPRESENTATION SYSTEMS

System Relational Expert System Hybrid Classification. FOL Theorem
Feature OBMS Shell Based System Prover
Language with well- Yes Yes Yes Yes
defined semantics
Expressiveness of , . . .
Language Low Righ Medium-High High
Inference Capabilities Medium High High Very High
Very High Medium Medi
Efficiency eryrig edium Low
High-Level Language No No Yes No
Well o&._.:ma Yes No Yes Yes
Semantics
Expressiveness of Very Low Low High High
Language
Inference Capabilities None None High High
Efficiency N/A N/A Medium Very Low
Second-Order No No Yes No

Reasoning
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C. NIKL Users
NIUXL has been installed at the organizations listed helow:

University of Southern Calilornia. Isl

Bolt. Beranek. and Newman, Boston, N1A

Massachusetts [nstitute of Technology

Carnegie-Mellon University

Lockheed Al Center Menlo Park, CA

Courant Institute of Matlh. Sci., New York University, New York
AMCC, Austin Texas

The MITRE Corporation, Bedlord, MA

San Francisco State University

University of Florida, Gainesville, FL

University of Pennsylvania, Philadelphia, Penn.

St. Patrick’s College, Dublin, Republic of Ireland
Technische Universitat Berlin, Federal Republic of Germany
UNISY'S, Paoli, Penn.

University of Leeds, England, United KNingdom

University of Saarbruecken, Federal Republic of Germany
Whitney /Demos Productions, Culver City, CA
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